NIMA DEHMAMY

Research Staff Member, IBM Research

Research Interests	
I work on machine learning for science, graph neural networks and optimization capable of discovering and encoding physical symmetries. My long-term goal is scientific discovery. I also work on AI for humanities, using it to understand er and paradigm shifts. EDUCATION	n. I design ML architectures to transform and automate volution of arts and science,
PhD in Physics, Boston University, advisor: H.E. Stanley Masters in Physics, Sharif University of Technology, advisor: S. Rohani Bachelor in Physics Sharif University of Technology	$\begin{array}{c} 2009 \\ -2016 \\ 2006 \\ -2008 \\ 2002 \\ -2006 \end{array}$
EXPERIENCE	
RESEARCH STAFF MEMBER IBM RESEARCH, CAMBRIDGE MA RESEARCH ASSISTANT PROFESSOR, NORTHWESTERN UNIVERSITY POSTDOCTORAL FELLOW, NORTHEASTERN UNIVERSITY RESEARCH INTERN, QUANTLAB LLC. BOSTON VISITOR, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, SENSEABLE CITY GK-12 FELLOW (FENWAY HIGH SCHOOL SCIENCE TEACHER'S ASSISTANT)	Apr 2022—Present Aug 2019—Feb 2022 Jan 2016—Jul 2019 Jun-Aug 2015 Lab Sep 2015 Jun-Dec 2012
Skills	
THEORY: Physics • Machine learning • Graph Neural Networks • Optimization PROGRAMMING: Python, JavaScript, HTML/CSS, Shell Scripting, C/C++ Are	n • Dynamical Systems duino
Honors and Awards	
• Nature magazine cover (volume 563 (2018))	2018
• Nature Physics cover (volume 17 (Feb 2021))	2021
• Ranked top 1% among over 30,000 in the national Physics, Mathematics and Computer Science Olympiads in Iran (2nd round)	2000 and 2001
• "Extraordinary Achievement in Teaching" award BU Physics	2011
• As "Exceptional Talent" admitted to Master's program in physics at Shar	rif University 2006
PUBLICATIONS	
Highlights	
1. Latent Space Symmetry Discovery Jianke Yang, <u>Nima Dehmamy</u> , Robin Walters, Rose Yu, TAGML Work	2023 shop, ICML 2023
2. Generative Adversarial Symmetry Discovery Jianke Yang, Robin Walters, <u>Nima Dehmamy</u> , Rose Yu, ICML 2023 [ar	2023 •Xiv:2302.00236]
3. Accelerating network layouts using graph neural networks Csaba Both, <u>Nima Dehmamy</u> , Rose Yu, and Albert-László Barabási , Na (1), 1560	2023 ture Communications 14
 Symmetries, flat minima, and the conserved quantities of gradie Bo Zhao, Iordan Ganev, Robin Walters, Rose Yu, <u>Nima Dehmamy</u>, ICL [arXiv:2210.17216] 	ent flow 2022 R 2023
5. Symmetry Teleportation for Accelerated Optimization Bo Zhao, <u>Nima Dehmany</u> , Robin Walters, Rose Yu, NeurIPS 2022 [ar:	2022 Xiv:2205.10637]
6. Faster Optimization on Sparse Graphs via Neural Reparametriz Nima Dehmamy, Csaba Both, Jianzhi Long, Rose Yu , [arXiv:2205.136	<i>cation</i> 2022 324]
7. Automatic Symmetry Discovery with Lie Algebra Convolutional Nima Dehmamy, Robin Walters, Yanchen Liu, Dashun Wang, Rose Yu, Y	<i>Networks</i> 2021 NeurIPS 2021,

[arXiv:2109.07103]

8.	Understanding the Representation Power of Graph Neural Networks in Learning Grap Topology 201	9h 19
	Nima Dehmamy, Albert-Laszlo Barabasi, Rose Yu, NeurIPS 2019	
9.	A Structural Transition in Physical Networks 201 Nima Dehmamy, Soodabeh Milanlouei, Albert-László Barabási, Nature 563 (7733), 676	18
10.	Understanding the onset of hot streaks across artistic, cultural, and scientific careers 202 Lu Liu, <u>Nima Dehmamy</u> , Jillian Chown, C. Lee Giles, Dashun Wang, Nature Communication volume 12, 5392 (2021) [arXiv:2103.01256]	21 ns
11.	Isotopy and Energy of Physical Networks 2019 Yanchen Liu, Nima Dehmamy, Albert-László Barabási, Nature Physics 17 (2), 216-222	20
12.	On the universality of inner black hole mechanics and higher curvature gravity 202 Alejandra Castro, <u>Nima Dehmami</u> , Gaston Giribet, David Kastor, JHEP 1307 2013 164 arXiv:1304.1696 [hep-th]	13
Othe	er Publications	
1.	Systemic stress test model for shared portfolio networks 201 Irena Vodenska, Nima Dehmamy, Alexander P Becker, Sergey Buldyrev, Shlomo Havlin, Scientif Reports 11 (3358)	21 ic
2.	3D Topology Transformation with Generative Adversarial Networks20Luca Stornaiuolo, Mauro Martino, Albert-László Barabási, Nima Dehmamy,Proceedings of ICCC'20	20
3.	Direct Estimation of Weights and Efficient Training of Deep Neural Networks withor SGD 201	ut 18
	Nima Dehmamy, Neda Rohani, Aggelos Katsaggelos, Proceedings of ICASSP 2019	
4.	Crises and Physical Phases of a Bipartite Market Model 201 Nima Dehmamy, Sergey Buldyrev, Shlomo Havlin, H Eugene Stanley, Irena Vodenska, 201 [arXiv:1609.05939] 201	16
5.	First Principles and Effective Theory Approaches to Dynamics of Complex Networks 201 Nima Dehmamy (PhD Dissertation).	16
6.	Arbitrary Degree Distribution and High Clustering from a Local Geometric Network Growth Model 201	rk 15
7.	Nima Dehmamy, Navid Dianati (equal contribution), [arXiv:1501.03543] 201 Classical Mechanics of Economic Networks 201 Nima Dehmamy, Sergey Buldyrev, Shlomo Havlin, H. Eugene Stanley and Irena Vodenska, 201 [arXiv:1410.0104] 201	14

REVIEW FOR JOURNALS AND CONFERENCES

- AAAI 2021, 2022
- NeurIPS workshop on Interpretable Inductive Biases and Physically Structured Learning 2020
- Nature Communications
- Physical Review Letters
- Physical Review E
- Physical Review Research
- Nature Scientific Reports
- Nature Communications Physics
- Nature Machine Intelligence
- Social Network Analysis and Mining (SNAM)
- IEEE Transactions on Signal Processing
- Network Neuroscience

- Physica A
- NetSciX 2020, Tokyo, Japan, 2019
- Northeast Regional Conference on Complex Systems, Binghampton, NY, 2019
- Complenet 2018, Scientific Committee

Conferences, Presentations, Posters and Summer Schools

PRESENTATIONS	
• Learning Network Structure Using graph Convolutional Networks	
DATA Lab, Khoury College of CS, Northeastern University, Boston, MA, USA	Jul 2020
RIKEN AIP, Tokyo, Japan	Jan 2020
NetSciX 2020	Jan 2020
• Topological Characterization of Meta-stable States in Weakly Non-linear Diff	usion Pro-
cesses on Networks, NetSci 2019	Jun 2019
• A Structural Transition in Physical Networks	Feb 2019
Harvard Medical School, Channing Division of Network medicine,	
• Perturbed Linear Dynamics on Networks and Surprises of Force-directed Lay	outs
NICO, Northwestern University, Evanston, IL	Jan 2019
• Utilizing hierarchy to approximate dynamics on networks ICCS 2018, Cambridge, MA	Jul 2018
• Forgoing SGD: Approximating layer weights directly from training data in d networks	eep neural Jun 2018
IBM Watson Research Lab, Cambridge, MA	
• Hierarchy and Time Scales: What Deep Learning and Network Science can	learn from
$each \ other$	Apr 2018
Physics Department, Michigan State University, East Lansing, MI	
• Optimization Problems on Networks, and What Deep Learning and Network S	cience can
learn from each other	Apr 2018
Broad Institute of MIT and Harvard, Cambridge, MA	
• The Power of Hierarchy: What Deep Learning and Network Science can learn	from each
other	Apr 2018
Kellogg School of Management, Northwestern University, Evanston, IL	
• Structural Phase Transition in Physical Networks Embedded in 3D	M 0010
Complemet 18, Boston, MA	MAR 2018
Dynamics Days 2018, Denver, CO	JAN 2018
• Properties of Networks of Local Interaction	SEP 2015
CCS2015 Emericantly welideted medel of stack network domentics	Cpp 0015
• Empirically valuated model of stock return dynamics	SEP 2015
• A Sustamia Strass Test Model in Bank Asset Naturaha	SED 2015
• A Systemic Stress Test Model in Dank-Asset Networks	SEP 2015
• Citica as attractive notantial. Notworks over sitica from physical interactions	Ium 2015
• Ottes as attractive potential. Networks over cities from physical interactions MIT Sonsophia City I ab	JUN 2015
 Properties of Networks of Interacting Stochastic Agents 	May 2015
BII Departmental Seminar	MINI 2010
• Landau-Ginzbura-tune Effective Laaranaians for Dunamical Networks	Jan 2015
Condensed Matter Theory Group Meeting	0.111 2010
• From Classical Fields to Networks of Arbitrary Degree Distribution and High	Clustering
Condensed Matter Theory Seminar	JAN 2015
• Cities as Attractive Potentials: Modeling City Social Networks as Physical In	teractions
MIT HumNet Group seminar	Feb 2015
• A Systemic Stress Test Model in Bank-Asset Networks	Dec 2014
MIT Media Labs, The Consortium for Systemic Risk Analytics and SYRTO,	

. Structure of Nous Continuent Time Conice	Inv. 2014
• Structure of News Sentiment Time Series	JUN 2014
POSTERS	
 Understanding the Representation Power of Graph Neural Networks in Le 	arning Granh
Topology	anning Graph
LANL 3d Physics Informed Machine Learning	Jan 2020
IPAM Workshop: Interpretable Learning in Physical Sciences	Ост 2019
NeurIPS 2019 (presented by Rose Yu)	Dec 2019
• Topological properties of Network Embeddings	JUN 2019
NetSci 2019	
• Direct Estimation of Weights and Efficient Training of Deep Neural Net	works without
SGD	Apr 2019
ICASSP 2019	
• Vox2Net: From 3D Shapes to Network Sculptures	Dec 2018
NIPS Creativity Workshop	
• Structural Phase Transition in Physical Networks	Jan 2018
Dynamics Days 2018	
• Physical Phases of Three Dimensional Networks	Jun 2017
NetSci	
• Arbitrary degree distribution and high clustering from a local geometric n	$etwork \ growth$
model	Jun 2015
NetSci, Zaragoza, Spain	
• Landau-Ginzburg Network Dynamics and Stability Analysis	JAN 2015
Dynamics Days XXIV, Nima Dehmamy.	L 0015
• Analytically Solvable Network Growth Model	JAN 2015
Dynamics Days XXIV, Navid Dianati, Nima Denmamy.	Inst 9014
• A Dynamical Model of Systemic Risk in Bank-Asset Networks JUN 2014 NatCo: Nima Dahmamu Cangau Duldunau Shlama Hardin, H. Furgana Stanlay and Irana Vadanaka	
Communal Boon Solartion and Scale free Networks	III VOUEIISKA.
• Communal Teer Selection and Scale-free Wetworks NetSci Navid Dianati Nima Dehmany	JUN 2014
LECTURES	
• MATHEMATICAL PHYSICS, 4 lectures at IPM, Tehran, Iran	Fall 2007
on Gauge theory. Path integrals, Moval Deformation General Relativity and Supersyn	nmetry
• CLASSICAL PERTURBATION THEORY	Spring 2006
invited lecturer for Intermediate Classical Mechanics class	
• Introductory Lecture on String Theory	Aug 2006
at High School for Exceptional Talents in Shahr-e-Rey	
• RENORMALIZATION AND EFFECTIVE LAGRANGIAN BY J. POLCHINSKI	Spring 2006
for Quantum Field Theory II	
Conferences and Workshops	
• NetSciX Tokyo, Japan	Jan 2020
• LANL 3D Physics Informed Machine Learning Santa Fe, NM, USA	Jan 2020
• IPAM Workshop II: Interpretable Learning in Physical Sciences UCLA	Oct 2019
• NetSci'19 Burlington, VT, USA	Jun 2019
• KITP AT THE CROSSROAD OF PHYSICS AND MACHINE LEARNING Santa Barabara,	
CA, USA	Feb 2019
• COMPLENET'18 Boston, MA, USA	MAR 2018
• DYNAMICS DAYS Denver, CO, USA	JAN 2018
• NETSCI (NETWORK SCIENCE CONFERENCE) Indianapolis, IN, USA	JUN 2017
• AP5 MARCH MEETING (AMERICAN PHYSICAL SOCIETY) New Orleans, LA, USA	MAR 2017
• UUS2015 (UONFERENCE ON UOMPLEX SYSTEMS) Tempe, AZ, USA	SEP 2015
• DYNAMICS DAYS AATV HOUSTON, IA, USA • NETSCI Borkolov, CA, USA	JAN 2015 Jun 2014
• INETROFIDER NOR USA	$\frac{100}{100} \frac{2014}{2010}$
• SIMONS WORKSHOP IN WATHEMATICS AND FHYSICS	AUG 2010

• Emergent Gravity, SISSA, Trieste, Italy

• NEUROSCIENCE, IPM, Tehran, Iran

Mar 2007 Jun 2005

CODING, ROBOTICS AND ELECTRONICS PROJECTS

- 1. Vox2Net: From 3D shapes to Networks (2018) We designed a 3D pix2pix GAN and taught it to convert 3D shapes to networks. The output is further processed with the 3D-ELI algorithm (below) to create a realistic 3D network out of a 3D shape. (git in preparation)
- 2. DMN: Density Matrix Network (2017) A pre-trained neural network using a supervised PCA method, which can replace conventional ConvNet or fully connected layers. Based on our paper (arxiv.org/abs/1703.04757) (github: github.com/nimadehmamy/DMN.git)
- 3. **3D-ELI-FUEL: Simulation code for laying out networks in 3D space** (2017) The algorithm curves links and optimizes link length. Coded in Python, using TensorFlow to run on the GPU. (github: github.com/nimadehmamy/3D-ELI-FUEL)
- 4. **3dvis: A Visualization Tool for networks embedded in 3D space** (2016) Purely client-side javascript, using Three.js (github: github.com/nimadehmamy/3dviz)
- 5. Nomadnet: A Project visualization and management tool (2016) In JavaScript, used for managing interactions and progress of projects one is involved in. Will link to Slack and hopefully Rocket.chat soon.
- 6. "Web-controlled Robotic Arm" (2016) Using Node.js, webRTC, and Arduino to build a doll controlled over the web
- 7. "Internet of Things" projects with Raspberry Pi (2015) temperature sensing with ADC of ATTiny45 and reporting with I²C to Raspberry Pi; 2 day project with friend.
- 8. Halloween robotic doll "Overly-attached Cyborg" (2014) with sonic ranging, scouts different angles by turning neck, warns proximal subjects by making eyes glow red and waves arm at them.
- 9. LED star with touch control (2014) ATTiny45 and custom built and coded capacitive touch sensor and wireless charging; with a friend.
- 10. **Transformer Biped** (2012) car and biped hybrid with 15 micro-servos and driven by Arduino Micro and Adafruit I²C motor servo shield.
- 11. Humanoid Arm (2003) with 8051 microcontroller with serial interface to Matlab
- 12. Object Gatherer (2003) college team, Amir Kabir University
- 13. Fire-fighting pathfinder robot (2003) Amir Kabir University (no microcontrollers, just TTL logical gates, OP-Amps, FET H-bridges and basic electronics.)

Web

LinkedIn

http://www.linkedin.com/pub/nima-dehmamy/4a/70a/577

GOOGLE SCHOLAR

http://scholar.google.com/citations?user=gvHpUtgAAAAJ&hl=en

ResearchGate

 $http://www.researchgate.net/profile/Nima_Dehmamy$